dropped in, but it was found that the steel members could be joined apart sufficiently on each row to fit into the centres to make this unnecessary. The floor slabs were then slid sideways into position on a 3 in. by 4 in. steel flat, resting on the chassis and this was slowly withdrawn.

At floor and seven levels, behind the facing frame, an in situ concrete beam was cast, continuity being obtained at the stairs by passing bars through the holes in the web. The roofs are constructed of the same floor slabs as the floors, with 3 in. of insulating creel and finished with three layers of bituminous felt and face while chipging.

Floor finishes are plastic tiles for classrooms and workshops (except for metalworking, which has granolithic finishes), terrazzo tiles for circulation areas and kitchens, wood strip for the main hall and gymnasium, and linoleum for the staff rooms.

The main services run in reinforced concrete ducts under the floor, with corrugated iron used as permanent shuttering for the slab over.

The atomic heating of the school is from a low-pressure, accelerated hot-water system with cast-iron boilers and automatic underfeed mechanical stokers, the intended fuel being bituminous coal.

The classrooms on the first floor, together with their adjacent store rooms, are heated by embedded copper-pipe panels. These panels also supply some heat to the rooms on the ground floor. Where there is not enough, the rooms are further heated by convectors and pipe coils on a two-pipe system. In the case of the gymnasium, workshops, kitchen and adult handicraft rooms, where there is no heat from the ceiling, the full heating load is taken by convectors and pipe coils.

The pipe circuit supplying the convectors and pipe coils is a high-temperature circuit with a maximum boiler flow temperature of 180° F. This circuit also serves local water-storage calenters.

The embedded floor panels are formed from 1 in. nominal bare copper tube to BS 3608/47 of 18 SWG. The separate coils are connected in parallel to the low-temperature circuit mains through horizontal header pipes fixed above the floor in a stair or convenient position. The separate coils were designed to have an equal friction resistance not exceeding 7 ft, so as to give an even heat output.

Economy in pipework was considered and cut lengths greater than 15 ft were used again. The joints are copper ferrules with silver solder. The coils have to penetrate the web of the 24 ft. span, 3ft and they are insulated at these points against electrolytic attack by a split copper pipe. In all serious heating rooms, except those facing south and those facing east and west with one outside wall only, 12 in. pipe coils on the high-temperature circuit are fixed at low level under the windows to prevent down draughts.

Four forced-air convectors are used in both the main hall and the gymnasium controlled by a thermostat. The duct work in the main hall is arranged so that fresh air can be drawn in at the rear.

A time switch was required to change over to a night setting of approximately 60 per cent full load. It is intended that night setting should operate at weekends. There are also manually operated valves to prolong either the day or night setting.